Curvature Done Optimally

Dongming (Merrick) Hua¹ Mentor: Fabio Ricci¹

¹University of California - Santa Barbara Department of Mathematics - Directed Reading Program 2024

UC SANTA BARBARA

Introduction

Curvature is a central concept in Riemannian geometry, and bounds on the various cur‐ vatures of a manifold *M* translate into useful constraints on the geometry and topology of *M*. In particular, lower bounds on the Ricci curvature Ric*^M* of *M* play a key role in many important theorems.

We discuss an alternate notion of "curvature bounded below by K " for compact Riemannian manifolds, which only involves the distance on the manifold and the volume measure of the manifold. We will show that in the Riemannian setting, a manifold has Ricci curvature $\geq K$ if and only if it satisfies this alternate condition. This new definition does not explicitly use the Riemannian structure, and thus can be generalized to a broader, nonsmooth class of metric measure spaces.

To get an idea of manifolds with $\mathrm{Ric}_M \geq K$, we can look at the model spaces M_K^n constant sectional curvature *K*, where

Comparison Geometry

over maps $T: M \to M$ satisfying $T_{\sharp} \mu = \nu$. McCann showed that if M is compact and $\mu = \rho_0$ vol, $\nu = \rho_1$ vol, where vol is the normalized volume measure on M, then there exists a unique optimal transport map *T* minimizing the above cost. Moreover, *T* is of the form

of

$$
M_K^n = \begin{cases} \text{the sphere } S^n(K), & K > 0\\ \text{Euclidean space } \mathbb{R}^n, & K = 0\\ \text{hyperbolic space } \mathbb{H}^n(K), & K < 0. \end{cases}
$$

Intuitively, in positive curvature geodesics diverge then converge, in zero curvature they diverge at a constant rate, and in negative curvature they diverge increasingly rapidly.

where *T* is the optimal transport map from μ to ν . This distance is called the 2-Wasserstein distance, and can be defined more generally for metric measure spaces via an alternate formulation of the optimal transport problem.

By the work of McCann, for any two measures $\mu_0, \mu_1 \in \mathcal{P}_2^{ac}$ geodesic $(\mu_t)_{0 \le t \le 1}$ between them, so that $W_2(\mu_s, \mu_t) = |t - s| W_2(\mu_0, \mu_1)$ for all $0 \le s, t \le t$ 1. Moreover, there must exist $T: [0,1] \times M \rightarrow M$ given by

 $T(t, x) = \exp_x(t\nabla\varphi(x)),$

so that for each $t \in [0,1]$, the map $T_t \colon M \to M$ defined by $T_t(x) = T(t,x)$ is the optimal transport map from μ_0 to μ_t . Therefore, we can write $\mu_t = (T_t)_\sharp \mu_0$, and for each t the Jacobian determinant of T_t at *x* is $\rho_0(x)/\rho_t(T_t(x))$ μ_0 -almost everywhere. Observe that by properties of the exponential map, $d(x, T_1(x)) = |\nabla \varphi(x)|$ for all *x*, hence

Figure 1. Geodesics in positive, zero, and negative curvature. Image from [\[3](#page-0-0)].

Optimal Transport

Optimal transport studies the most efficient way to transport some amount of mass from one configuration to another, such as moving a pile of sand to build a sandcastle:

We can view the configurations of masses as probability measures *µ* and *ν* on *M* and measure efficiency via minimizing the cost

The key connection between optimal transport on *M* and the Ricci curvature of *M* is that Ricci curvature features in a differential inequality for the Jacobian determinant of the map $T(t, x) = \exp_x(t\nabla\varphi(x))$.

Let $J_t(x)$ be the Jacobian of T_t at x , and let $\mathcal{J}_t(x) = \det J_t(x)$. We can write $\mathcal{J}_t(x)$ in terms of Jacobi fields along the geodesic $\gamma(t) = \exp_x(t\nabla\varphi(x))$. Then, via the Jacobi equation and the Cauchy-Schwarz inequality, we obtain the inequality

$$
\int_M d(x,T(x))^2 \mathrm{d}\mu(x)
$$

$$
T(x) = \exp_x(\nabla \varphi(x))
$$

for some semiconvex $\varphi \colon M \to \mathbb{R}$, and the Jacobian determinant of *T* at *x* is equal to $\rho_0(x)/\rho_1(T(x))$ *µ*-almost everywhere.

- [1] Luigi Ambrosio and Nicola Gigli. *A User's* **Guide to Optimal Transport.** Berlin, Heidelberg, 2013.
- [2] Xianzhe Dai and Guofang Wei. *Compar‐* [5] Cedric Villani. *Optimal Transport: Old ison geometry for ricci curvature*.
- Springer, [4] Karl-Theodor Sturm. On the geometry of metric measure spaces. 2006.
	- *and New*. Springer, Berlin, Heidelberg, 2008.
- [3] Shin-ichi Ohta. Ricci curvature, entropy

The Wasserstein 2-Distance

Let \mathcal{P}_2^{ac} $\chi_2^{ac}(M)$ be the set of all probability measures on a compact manifold M which are absolutely continuous with respect to vol, meaning measures for which we can write $\mu = \rho$ vol for some density ρ . We can give this space a metric by defining

Theorem 1 (Equivalence of $\text{Ric}_M \geq K$ *and Curvature Bounded Below By K). A compact Riemannian manifold* M^n *satisfies* $\text{Ric}_M \geq K$ *if and only if it has curvature bounded below by K.*

Proof. First, suppose $\text{Ric}_M \geq K$. Let $\mu_0, \mu_1 \in \mathcal{P}_2^{ac}$ $\exp_x(t\nabla\varphi(x))$ the map associated with the unique Wasserstein geodesic $(\mu_t)_{0\leq t\leq 1}.$ Then we have $\rho_t(T_t(x)) = \rho_0(x)/\mathcal{J}_t(x)$, and so by this change of variables we have

$$
W_2(\mu, \nu) = \left(\int_M d(x, T(x))^2 d\mu(x) \right)^{\frac{1}{2}},
$$

The other direction is more complicated, so we only sketch an outline here. A more detailed account can be found in[[5\]](#page-0-1). Suppose *M* has curvature bounded below by *K*. Let $x \in M$, $v \in T_xM$ be arbitrary. Take μ_0 to be the normalized volume measure on a small ball $B_{\varepsilon}(x)$, and take the transport map to be $T_t(x) = \exp_x(t\delta \nabla \varphi(x))$ for some small *δ* and suitable φ satisfying $\nabla(\varphi(x_0)) = v$. From this we obtain a Wasserstein geodesic $(\mu_t)_{0 \le t \le 1}$ given by $\mu_t = (T_t)_{\sharp} \mu_0$, and choosing ε, δ , and φ carefully, the inequality for *H*(μ *t*) gives us the desired Ricci curvature bound $\text{Ric}(v, v) \ge K|v|^2$.

Theorem 2 (Generalized Brunn‐Minkowski). Suppose that M has curvature bounded below by K. For nonempty, compact $A_0, A_1 \subseteq M$ *and* $t \in (0,1)$ *, let* A_t *be the set of all points* $\gamma(t)$ *, where* γ *runs over all unit-length geodesics with* $\gamma(0) \in A_0, \gamma(1) \in A_1$ *. Then*

$$
W_2(\mu_0, \mu_1)^2 = \int_M |\nabla \varphi|^2 d\mu.
$$

Optimal Transport Maps and Ricci Curvature

t(1 *− t*) 2 $d(A_0, A_1)^2$.

The following diagram depicts this inequality in the case $K > 0$, reflecting the fact that geodesics spread out and then return back together in positive curvature.

Figure2. Brunn-Minkowski when $K > 0$. Image from [[5\]](#page-0-1).

$$
\frac{\mathcal{J}'_t}{\mathcal{J}_t} - \left(\frac{\mathcal{J}'_t}{\mathcal{J}_t}\right)^2 \le \frac{\mathcal{J}'_t}{\mathcal{J}_t} - \left(1 - \frac{1}{n}\right) \left(\frac{\mathcal{J}'_t}{\mathcal{J}_t}\right)^2 \le -\operatorname{Ric}(\nabla\varphi, \nabla\varphi).
$$

Curvature Bounded Below by *K*

For $\mu \in \mathcal{P}_2^{ac}$ $\chi_2^{ac}(M)$, define the **entropy** of μ by

$$
H(\mu) = \int_M \rho \log \rho \, d\text{ vol},
$$

where $\mu = \rho$ vol. We say M has **curvature bounded below by K** if for any measures $\mu_0, \mu_1 \in \mathcal{P}_2^{ac}$ $\chi_2^{ac}(M)$, the unique Wasserstein geodesic $(\mu_t)_{0 \leq t \leq 1}$ satisfies

$$
H(\mu_t) \le (1 - t)H(\mu_0) + tH(\mu_1) - K \frac{t(1 - t)}{2}W_2(\mu_0, \mu_1)
$$

2

References

for all $0 \le t \le 1$.

and optimal transport. 2014.

The Main Theorem

 t_2^{ac} there is a unique Wasserstein

$$
\nabla \varphi).
$$

$$
\frac{d}{dt}H(\mu_t) = \frac{d}{dt} \int_M \frac{\rho_0}{\mathcal{J}_t} \log \frac{\rho_0}{\mathcal{J}_t} \mathcal{J}_t \text{d}\text{vol} = -\int_{d^2} d^2 H(\mu_t) = -\int_M \left(\frac{\mathcal{J}_t''}{\mathcal{J}_t} - \left(\frac{\mathcal{J}_t'}{\mathcal{J}_t}\right)^2\right) \rho_0 \text{d}\text{v}
$$

By the differential inequality for J , we have

M J ′ t Jt ρ_0 d vol, *ρ*0d vol *.*

 2 d vol = $KW_{2}(\mu_{0}, \mu_{1})^{2}$. $\frac{d^2}{dt^2}f(t) = \frac{d^2}{dt^2}$ $\frac{d^2}{dt^2}H(\mu_t)$ *−*

 $f(1) = (1 - t)H(\mu_0) + tH(\mu_1),$

$$
\frac{d^2}{dt^2}H(\mu_t) \ge \int_M \text{Ric}(\nabla \varphi, \nabla \varphi) d\,\text{vol} \ge K \int_M |\nabla \varphi|^2
$$

Defining $f(t) = H(\mu_t) + K$ *t*(1*−t*) $\frac{(-t)}{2}W_2(\mu_0,\mu_1)^2$, we see that $\frac{d^2}{dt^2}$ $KW_2(\mu_0,\mu_1)^2\geq 0.$ Therefore f is convex, and for any $t\in [0,1]$ we have

$$
H(\mu_t) + K \frac{t(1-t)}{2} W_2(\mu_0, \mu_1)^2 = f(t) \le (1-t)f(0) + tf(0)
$$

s desired

as desired.

Brunn-Minkowski

One geometric consequence of curvature $\geq K$ is the following Brunn-Minkowski inequality, generalizing the classic Brunn-Minkowski inequality in \mathbb{R}^n .

ln Vol(*At*) *≥* (1 *− t*) ln Vol(*A*0) + *t*ln Vol(*A*1) + *K*

This inequality can be improved if we introduce a *CD*(*K, N*) condition, which encapsu‐ lates both "curvature bounded below by *K*" and "dimension bounded above by *N*", and in fact the validity of this improved inequality is equivalent to the *CD*(*K, N*) condition.

 $\mathcal{L}^{ac}_2(M)$ be arbitrary, and let $T(t,x) =$